GEOMETRY

NAMING ANGLES:

- > any angle less than 90° is an **acute angle**
- > any angle equal to 90° is a **right angle**
- > any angle between 90° and 180° is an **obtuse angle**
- > any angle between 180° and 360° is a **reflex angle**

NAMING TRIANGLES:

- > any triangle which has three sides of equal length and three equal angles (60°) is an equilateral triangle
- > any triangle which has two sides of equal length and two equal angles is an **isosceles** triangle
- > any triangle which has no sides of equal length and no equal angles is a scalene triangle
- > any triangle which has one right angle is a **right angled triangle**

ANGLE SUMS:

angles at a point on a straight line add up to 180°

$$a + b = 180^{\circ}$$

angles round a point add up to 360°

$$c + d + e = 360^{\circ}$$

- vertically opposite angles are equal
- angles in a triangle add up to 180°

$$x + y + z = 180^{\circ}$$

PARALLEL LINES:

At each point where a straight line crosses a set of parallel lines there are two pairs of **vertically opposite** angles:

QUADRILATERALS:

rectangle	square		trapezium	
parallelogram	7	rhombus		_/

POLYGONS:

The sum of interior angles of a polygon with n-sides is: (n-2). 180°. So for ABCDE the sum of interior angles is (5-2). 180° = 540°.

- regular polygons have all the sides equal and the interior angles are equal as well
- irregular polygons have all the sides equal, but the interior angles are not.

Polygon	Number of sides	Sum of interior angles		Interior angle of a regular polygon
Triangle	3	180°	: 3	60°
Quadrilateral	4	360°	: 4	90°
Pentagon	5	540°	: 5	108°
Hexagon	6	720°	: 6	120°

The external angle of a triangle is equal to the sum of the two opposite interior angles: d is the external angle at c

Now
$$c + d = 180^{\circ}$$
 [angles on a straight line]

i.e.
$$c = 180^{\circ} - d$$

and
$$a + b + c = 180^{\circ}$$
 [angles sum of a triangle]

$$c = 180^{\circ} - (a + b)$$

So
$$180^{\circ}$$
 - $d = 180^{\circ}$ - $(a + b)$
 $d = a + b$

ANGLES:

In each of the following diagrams a straight line crosses two parallel lines:

Corresponding angles are equal – we look for an F shape which may be upside down and/or

back to front

Alternate angles are equal – we look for a Z shape which may be back to front.

SOME MATHEMATICAL TERMS ABOUT A TRIANGLE:

- For the sides a, b, and c of a triangle *a triangle inequality* is valid: a + b > c > a b. It is also true that opposite a bigger side there is a bigger angle; opposite the smaller side there's a smaller angle.
- Axis of an abscissa AB is a line which passes through the centre of the abscissa and is perpendicular to it.
- Axis of an angle ABC is a half-line BX whose each point X is of equal distance to the arms BA, BC
- Transversal line of a triangle is an abscissa, whose marginal points are the centres of two sides of a triangle; it is parallel to that side, through centre of which it doesn't cross. Its size is equal to $\frac{1}{2}$ of the side to which it is parallel.
- **Median** of a triangle is an abscissa, whose marginal points are a vertex of a triangle and the centre of the opposite side. The all three medians pass through one common point T, called the **centre of gravity**.
- Altitude (height) of a triangle is the distance between a vertex of a triangle and the line on which the opposite side of a triangle lies. The altitudes pass through one point O, called the orthocentre.

• in a right-angled triangle the Pythagoras' formula (rule) is valid: $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$, where a and b are sides, either the opposite or adjacent, and c is a **hypotenuse**, i.e. the side opposite the right angle.

SOLIDS, THEIR SURFACE AREAS AND VOLUMES

A = surface area

V = volume

BLOCK

$$A = 2 (ab + bc + ac)$$

$$V = abc$$

diagonal of a block =
$$\sqrt{a^2 + b^2 + c^2}$$

CUBE

$$A = 6 a^2$$

$$V = aaa = a^3$$

diagonal of a cube = a $\sqrt{3}$

CYLINDER

$$A = 2\pi r^2 + 2\pi r v$$

$$V = \pi r^2 v$$

SPHERE

$$A = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

PRISM

If the base of a perpendicular prism is a triangle or a quadrilateral, we speak about a triangular or quadrangular prism. If the base is a regular polygon, we speak about a regular prism.

Generally:

$$A = 2 \cdot A_b + Q$$

$$V = A_b \cdot h$$

where A_b is the area of a base, Q is the surface area of casing, h is a height of the solid

PYRAMID may have as its base a triangle, quadrilateral or another polygon.

• triangle as a base = tetrahedron: $A = A_b + Q$

$$V = \frac{1}{3} A_b \cdot v$$

• rectangle as a base = quadrangular pyramid: $A = A_b + Q$

$$V = \frac{1}{3} a \cdot b \cdot v$$

CONE

$$A = \pi r^2 + \pi rs$$

$$V = \frac{1}{3} \pi r^2 v$$

$$s = \sqrt{r^2 + v^2}$$