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In calculus, a branch of mathematics, the derivative is a measurement of how a function 

changes when the values of its inputs change. Simply speaking, a derivative can be 

thought of as how much a quantity is changing at some given point. For example, the 

derivative of the position of a car at some point in time is the velocity, or speed, at which 

that car is travelling (conversely the integral of the velocity is the car's position or 

distance travelled). 

The derivative of a function at a chosen input value describes the best linear 

approximation of the function near that input value.  

For a real-valued function of a single real variable, the derivative at a point equals the 

slope of the tangent line to the graph of the function at that point.  

The process of finding a derivative is called differentiation. The fundamental theorem of 

calculus states that differentiation is the reverse process to integration. 

 

Differentiation is a method to compute the rate at which a quantity, y, changes with 

respect to the change in another quantity, x, upon which it is dependent. This rate of 

change is called the derivative of y with respect to x. In more precise language, the 

dependency of y on x means that y is a function of x. If x and y are real numbers, and if 

the graph of y is plotted against x, the derivative measures the slope of this graph at each 

point. This functional relationship is often denoted  y = f(x), where f denotes the function. 

 

The simplest case is when y is a linear function of x, meaning that the graph of y against x 

is a straight line. The equation of all linear graphs is of the form:  y = f(x) = mx + c where 

m is the gradient and c is the interception point of the line with the y-axis.  

If a line forms an angle � with the positive x – axis, then we speak about the gradient of a 

line, i.e. the number m = tg � = 
NxMx
NyMy

−
−

. The numerator shows us the function, while 

the denominator indicates the variable.  

 

Example 1: y=
4
3

x + 1   Gradient is 
4
3

, and an intercept with the y-axis is at 1. The 

gradient is positive, therefore the line is sloping upwards from left to right. 
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Example 2: y = -
2
5

x – 3 Gradient is -
2
5

 and an intercept with the y-axis is at –3. 

The gradient is negative, and therefore the line is sloping downwards from left to right.  
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Being able to identify the gradient and intercept with the y-axis from a linear equation 

enables you to sketch or draw a graph.  

 

The gradient of a straight line is the same at all points on the line. With a curve however 

the gradient, or steepness, will depend upon where we are on the curve.  

The gradient at a point P on a curve is defined as the gradient of the tangent drawn 

to the curve at this point P, i.e. the gradient of the line just touches the curve at the 

point P.  
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Suppose that we wish to find the gradient of a curve y = f(x) at a point P[x, y] on the 

curve. Consider a second point, Q, lying on the curve, near to P and with x – coordinate 

given by x + �x, where �x is used to denote a small increment of length in the direction of 

the x – axis.  

Thus the gradient of the chord PQ = 
xx

yy

PQ

PQ

−
−

=
xxx

xfxxf
−+
−+

δ
δ )()( = 

x
xfxxf

δ
δ )()( −+  

Now if we move Q nearer to P, say to pints Q1, Q2, … then the gradient of the chords PQ, 

PQ1, PQ2, … will give better and better approximations for the gradient of the tangent at 

P and therefore, the gradient of the curve at P.  

If we say that P has coordinates [x, y] and Q has coordinates [x + �x, y + �y] then the 

gradient m = lim 
xxx
yyy

−+
−+

δ
δ = lim 

x
y

δ
δ  

We write 
dx
dy

(pronounced ‘dee y by dee x’) or y´and we call it the differential coefficient 

of y with respect to x. It gives the formula by which the gradient at any point on the line 

can be determined. The process of finding the differential coefficient of a function is 

called differentiation.  

 

Differentiation Rules  

Here follow the formulas and rules for differentiating the most common functions. In 

each case, the variable with respect to which the derivative is being taken is x. 

 

Formulas for differentiating 

FUNCTION  

f(x) 

DERIVATIVE OF  f(x) =  

= f ‘ (x) 

c ∈R 0 

x 1 

xn n . xn - 1 

ln x 
x
1

 

sin x cos x 

cos x - sin x  
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tg x 
x2cos

1
 

cotg x 
x2sin

1−  

ax ax . ln a 

ex ex 

 

Rules for differentiating: 

[f(x) ±  g(x)] ‘ = f ‘ (x) ±  g ‘ (x) 

 

[f(x) . g(x)] ‘ = f ‘ (x) . g(x) + f(x) . g ‘ (x) 

�
�

�
�
�

�

)(
)(

xg
xf

’ = 
)().(

)(').()().('
xgxg

xgxfxgxf −
 

 

Differentiation of a complex function: 

y = f [g(x)], u = g(x) => y = f (u) 

y ‘ = f ‘ (u) . u ‘ = f ‘ [g(x)] . g’ (x) 

 

Example: y = tg (3x5 – 4x +1) 

y’ = 
)143(cos

1
52 +− xx

. (15x4 – 4) 

 

The derivative as a function 

Let f be a function that has a derivative at every point a in the domain of f. Because every 

point a has a derivative, there is a function which sends the point a to the derivative of f 

at a. This function is written f ' (x) and is called the derivative function or the derivative 

of f. The derivative of f collects all the derivatives of f at all the points in the domain of f. 

Sometimes f has a derivative at most, but not all, points of its domain. The function 

whose value at a equals f'(a) whenever f'(a) is defined and is undefined elsewhere is also 

called the derivative of f. It is still a function, but its domain is strictly smaller than the 

domain of f. 
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Using this idea, differentiation becomes a function of functions: The derivative is an 

operator whose domain is the set of all functions which have derivatives at every point of 

their domain and whose range is a set of functions. If we denote this operator by D, then 

D(f) is the function f�(x). Since D(f) is a function, it can be evaluated at a point a. By the 

definition of the derivative function, D(f)(a) = f�(a). 

 

Higher derivatives 

Let f be a differentiable function, and let f'(x) be its derivative. The derivative of f'(x) (if it 

has one) is written f''(x) and is called the second derivative of f. Similarly, the derivative 

of a second derivative, if it exists, is written f'''(x) and is called the third derivative of f. 

These repeated derivatives are called higher-order derivatives. 

A function that has k successive derivatives is called k times differentiable.  

On the real line, every polynomial function is infinitely differentiable. By standard 

differentiation rules, if a polynomial of degree n is differentiated n times, then it becomes 

a constant function. All of its subsequent derivatives are identically zero. In particular, 

they exist, so polynomials are smooth functions. 

Consider a function f(x).  When we calculate the derivative f� of the function at a point x 

= a say, we are finding the gradient of the tangent to the graph of that function at that 

point. The tangent drawn at x = a. has the gradient f�(a). 

 

We will use this information to calculate the equation of the tangent to a curve at a 

particular point, and then the equation of the normal to a curve at a point. 

Remember: f�(a) is the gradient of the tangent drawn at x = a. 

 

The equation of a tangent 

The equation of a straight line (we will look at tangent and later at normal as well) that 

passes through a point (x0, y0) and has gradient m is given by m = 
0

0

xx
yy

−
−

, which implies 

y – y0 = f’(x0) (x – x0), since m = f’(x0). 

Example 1: Suppose we wish to find the equation of the tangent to 

f(x) = x3 − 3x2 + x − 1  at the point where x = 3. 

When x = 3 we note that f(3) = 33 − 3.32 + 3 − 1 = 27 − 27 + 3 − 1 = 2 
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So the point of interest has coordinates (3, 2). 

The next thing that we need is the gradient of the curve at this point. To find this, we 

need to differentiate f(x): 

f�(x) = 3x2 − 6x + 1 

We can now calculate the gradient of the curve at the point where x = 3. 

f�(3) = 3.32 − 6.3 + 1 = 27 − 18 + 1 = 10 

So we have the coordinates of the required point, (3, 2), and the gradient of the tangent at 

that point, that is 10. 

What we want to calculate is the equation of the tangent at this point on the curve. The 

tangent must pass through the point and have gradient 10. The tangent is a straight line 

and so we use the fact that the equation of a straight line that passes through a touch -

point (x0, y0) and has gradient m is given by the formula: 

m = 
0

0

xx
yy

−
−

 

Substituting the given values 10 = 
3
2

−
−

x
y

 and rearranging 

y − 2 = 10(x − 3) 

y − 2 = 10x − 30 

y = 10x − 28 

This is the equation of the tangent to the curve at the point (3, 2). 

y
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Example 2: 

Suppose we wish to find points on the curve y(x) given by 
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y = x3 − 6x2 + x + 3 where the tangents are parallel to the line y = x + 5. 

If the tangents have to be parallel to the line then they must have the same gradient. The 

standard equation for a straight line is y = mx + c, where m is the gradient. So what we 

gain from looking at this standard equation and comparing it with the straight line  

y = x+5 is that the gradient, m, is equal to 1. Thus the gradients of the tangents we are 

trying to find must also have gradient 1. 

We know that if we differentiate y(x) we will obtain an expression for the gradients of the 

tangents to y(x) and we can set this equal to 1. Differentiating, and setting this equal to 1 

we find y’ = 3x2 − 12x + 1 = 1 

from which 3x2 − 12x = 0 

This is a quadratic equation which we can solve by factorisation. 

3x2 − 12x = 0 

3x(x − 4) = 0 

3x = 0 or x − 4 = 0 

x = 0 or x = 4 

Now having found these two values of x we can calculate the corresponding y 

coordinates. We do this from the equation of the curve: y = x3 − 6x2 + x + 3   

When x = 0: y = 03 − 6.02 + 0 + 3 = 3. 

When x = 4: y = 43 − 6.42 + 4 + 3 = 64 − 96 + 4 + 3 = −25. 

So the two points are (0, 3) and (4,−25) 

These are the two points where the gradients of the tangent are equal to 1, and so where 

the tangents are parallel to the line that we started out with, i.e. y = x + 5. 
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Exercise: 

1. For each of the functions given below determine the equation of the tangent at the 

points indicated. 

a) f(x) = 3x2 − 2x + 4 at x = 0 and 3. 

b) f(x) = 5x3 + 12x2 − 7x at x = −1 and 1. 

c) f(x) = 1 − 2x at x = −3, 0 and 2. 

2. Find the equation of each tangent of the function f(x) = x3 − 5x2 + 5x − 4 which is 

parallel to the line y = 2x + 1. 

3. Find the equation of each tangent of the function f(x) = x3+x2+x+1 which is 

perpendicular to the line 2y + x + 5 = 0. 

 

The equation of a normal to a curve 

In mathematics the word ‘normal’ has a very specific meaning. It means ‘perpendicular’ 

or ‘at right angles’. 

The normal is a line at right angles to the tangent. 

If we have a curve we can choose a point and draw in the tangent to the curve at that 

point. The normal is then at right angles to the curve so it is also at right angles 

(perpendicular) to the tangent. 

We now find the equation of the normal to a curve. There is one further piece of 

information that we need in order to do this. If two lines, having gradients m1 and m2 

respectively, are at right angles to each other then the product of their gradients m1. m2, 

must equal −1, i.e.  

If two lines, with gradients m1 and m2 are at right angles then m1. m2 = −1 

 

Example 1: 

Suppose we wish to find the equation of the tangent and the equation of the normal to the 

curve y = x + 
x
1

 at the point where x = 2. 

First of all we shall calculate the y coordinate at the point on the curve where x = 2: 

y = 2 +
2
1

= 
2
5

 

Next we want the gradient of the curve at the point x = 2. We need to find y’. 
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Noting that we can write y as y = x + x-1 then 

y’ = 1 − x-2 = 1 −
2

1
x

 

Furthermore, when x = 2, y’(2) = 1 - 
4
1

= 
4
3

 

This is the gradient of the tangent to the curve at the point (2, 
2
5

).  

We know that the standard equation for a straight line is m = 
0

0

xx
yy

−
−

, 

With the given values we have  y − 
2
5

= 
4
3

 (x − 2) 

Rearranging    4y – 10 = 3x - 6 

4y = 3x + 4 

So the equation of the tangent to the curve at the point where x = 2 is 4y = 3x + 4. 

Now we need to find the equation of the normal to the curve. 

Let the gradient of the normal be m2. Suppose the gradient of the tangent is m1. Recall 

that the normal and the tangent are perpendicular and hence m1 . m2 = −1. We know  

m1 = 
4
3

. So 
4
3

. m2 = -1, which implies that m2 = 
3
4−  

So we know the gradient of the normal and we also know the point on the curve through 

which it passes, (2, 
2
5

). 

As before,  m = 
0

0

xx
yy

−
−

 

y − 
2
5

= 
3
4− ( x − 2) 

Rearranging 6y – 15 = -8x + 16 

6y + 8x = 31 

This is the equation of the normal to the curve at the given point. 
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Maxima and minima 

In this unit we show how differentiation can be used to find the maximum and minimum 

values of a function. 

Because the derivative provides information about the gradient or slope of the graph of a 

function we can use it to locate points on a graph where the gradient is zero. We shall see 

that such points are often associated with the largest or smallest values of the function, at 

least in their immediate locality. 

In many applications, a scientist, engineer, or economist for example, will be interested in 

such points for obvious reasons such as maximising power, or profit, or minimising 

losses or costs. 

 

Stationary points 

When using mathematics to model the physical world in which we live, we frequently 

express physical quantities in terms of variables. Then, functions are used to describe the 

ways in which these variables change. A scientist or engineer will be interested in the ups 

and downs of a function, its maximum and minimum values, its turning points. Drawing 

a graph of a function using a computer graph plotting package will reveal this behaviour, 

but if we want to know the precise location of such points we need to turn to algebra and 

differential calculus. In this section we look at how we can find maximum and minimum 

points in this way. 
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Consider the graph of the function, y = f(x). If, at the points A, B and C, we draw 

tangents to the graph, note that these are parallel to the x axis, and thus the gradient is 0.  

This means that at each of the points A, B and C the gradient of the graph is zero. 

We know that the gradient of a graph is given by f’(x0) 

Consequently, f’(x0) = 0 at points A, B and C. All of these points are known as stationary 

points. 

 

Any point at which the tangent to the graph is horizontal, i.e. is parallel to the x-axis, is 

called a stationary point, and the first derivative at these points equals zero.  

We can locate stationary points by looking for points at which f’(x0) = 0 

 

Turning points 

Notice that at points A and B the curve actually turns. These two stationary points are 

referred to as turning points. Point C is not a turning point because, although the graph is 

flat for a short time, the curve continues to go down as we look from left to right. 

So, all turning points are stationary points. But not all stationary points are turning points 

(e.g. point C). 

In other words, there are points for which f’(x0) = 0,  which are not turning points. 

 

At a turning point f’(x0) = 0 

A 

B 

C 
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Not all points where f’(x0) = 0 are turning points, i.e. not all stationary points are turning 

points. 

Point A is called a local maximum because in its immediate area it is the highest point, 

and so represents the greatest or maximum value of the function.  

Point B is called a local minimum because in its immediate area it is the lowest point, 

and so represents the least, or minimum, value of the function.  

Simply speaking, we refer to a local maximum as simply a maximum. Similarly, a local 

minimum is often just called a minimum. 

 

Distinguishing maximum points from minimum points 

Think about what happens to the gradient of the graph as we travel through the minimum 

turning point, from left to right, that is as x increases.  

f’(x) goes from negative through zero to positive as x increases. 

Notice that to the left of the minimum point, f’(x) is negative because the tangent has 

negative gradient. At the minimum point, f’(x) = 0. To the right of the minimum point 

f’(x) is positive, because here the tangent has a positive gradient. So, f’(x) goes from 

negative, to zero, to positive as x increases. In other words, f’(x) must be increasing as x 

increases. 

In fact, we can use this observation, once we have found a stationary point, to check if the 

point is a minimum. If f’(x) is increasing near the stationary point then that point must be 

minimum. 

Now, if the derivative of f’(x) is positive then we will know that f’(x) is increasing; so we 

will know that the stationary point is a minimum. Now the derivative of f’(x), called the 

second derivative, is written f “(x). We conclude that if f “(x) is positive at a stationary 

point, then that point must be a minimum turning point. 

 

If f’(x) = 0 at a point, and if f “(x) > 0 there, then that point must be a minimum. 

It is important to realise that this test for a minimum is not conclusive. It is possible for a 

stationary point to be a minimum even if f “(x) equals 0, although we cannot be certain: 

other types of behaviour are possible. (However, we cannot have a minimum if f “(x) is 

negative.) 
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To see this consider the example of the function y = x4 

A graph of this function is as follows: 
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There is clearly a minimum point when x = 0. But f’(x) = 4x3 and this is clearly zero 

when x = 0. Differentiating again f “(x) = 12x2 which is also zero when x = 0. 

The function y = x4 has a minimum at the origin where x = 0, but f “(x) = 0 and so is not 

greater than 0. 

 

Now think about what happens to the gradient of the graph as we travel through the 

maximum turning point, from left to right, that is as x increases. f’(x) is negative, f’(x) is 

zero, and f’(x) is positive. I.e. f’(x) goes from positive through zero to negative as x 

increases.  

Notice that to the left of the maximum point, f’(x) is positive because the tangent has 

positive gradient. At the maximum point, f’(x) = 0. To the right of the maximum point 

f’(x) is negative, because here the tangent has a negative gradient. So, f’(x) goes from 

positive, to zero, to negative as x increases. 

In fact, we can use this observation to check if a stationary point is a maximum. If f’(x) is 

decreasing near a stationary point then that point must be maximum. Now, if the 

derivative of f’(x) is negative then we will know that f’(x) is decreasing; so we will know 

that the stationary point is a maximum. As before, the derivative of f’(x), the second 

derivative is f “(x). We conclude that if f “(x) is negative at a stationary point, then that 

point must be a maximum turning point. 

 

If f’(x) = 0 at a point, and if f “(x) < 0 there, then that point must be a maximum. 
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It is important to realise that this test for a maximum is not conclusive. It is possible for a 

stationary point to be a maximum even if f “(x) = 0, although we cannot be certain: other 

types of behaviour are possible. But we cannot have a maximum if f “(x) > 0, because, as 

we have already seen the point would be a minimum. 

 

The second derivative test: summary 

We can locate the position of stationary points by looking for points where f’(x) = 0 

As we have seen, it is possible that some such points will not be turning points. We can 

calculate f “(x) at each point we consider ´suspicious´ for an extreme: 

� If f “(x)  is positive then the stationary point is a minimum turning point. 

� If f “(x) is negative, then the point is a maximum turning point. 

� If f “(x) = 0 it is possible that we have a maximum, or a minimum, or indeed other 

sorts of behaviour, i.e. a point of inflexion. So if f “(x) = 0 this second derivative 

test does not give us useful information and we must seek an alternative method – 

We need to consider the sign of f’(x) on either side of the point, i.e. check the 

monotony of the function in the neighbourhood of that point.  

 

Example: 

Suppose we wish to find the turning points of the function y = x3 − 3x + 2 and distinguish 

between them. 

We need to find where the turning points are, and whether we have maximum or 

minimum points. First of all we carry out the differentiation and set f’(x) equal to zero. 

This will enable us to look for any stationary points, including any turning points. 

y = x3 − 3x + 2 

y’ = 3x2 - 3 

At stationary points, f’(x) = 0 and so 3x2 – 3 = 0 

3(x2 – 1) = 0 (factorising) 

3(x − 1)(x + 1) = 0 ( factorising the difference of two squares) 

It follows that either x − 1 = 0 or x + 1 = 0 and so either x = 1 or x = −1. 

We have found the x coordinates of those points on the graph, where f’(x) = 0, that is the 

stationary points. We need the y coordinates which are found by substituting the x values 

in the original function y = x3 − 3x + 2. 
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When x = 1: y = 0. 

When x = −1: y = 4. 

To summarise, we have located two stationary points and these occur at (1, 0) and (−1, 

4). 

Next we need to determine whether we have maximum or minimum points, or possibly a 

point of inflexion which is neither maximum nor minimum. 

We have seen that the first derivative f’(x) = 3x2 – 3 

Differentiating this we can find the second derivative f”(x) = 6x 

We now take each point in turn and use our test. 

When x = 1: f”(1) = 6 

We are not really interested in this value. What is important is its sign. Because it is 

positive we know we are dealing with a minimum point. 

When x = −1: f”(-1) = -6 

Again, what is important is its sign. Because it is negative we have a maximum point. 

Finally, to finish this off we produce a quick sketch of the function now that we know the 

precise locations of its two turning points: 
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An example which uses the first derivative to distinguish maxima and minima 

Example: Suppose we wish to find the turning points of the function y = 
x

x 2)1( −
 and 

distinguish between them. 

First of all we need to find f’(x). 

In this case we need to apply the quotient rule for differentiation. 
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f’(x) = 
2

2)1()1(2
x

xxx −−−
 

This does look complicated. Don’t rush to multiply it all out if you can avoid it. Instead, 

look for common factors, and tidy up the expression. 

f’(x) = 
2

))1(2)(1(
x

xxx −−−
= 

2

)1)(1(
x

xx +−
 

We now set f’(x) equal to zero in order to locate the stationary points including any 

turning points: 
2

)1)(1(
x

xx +−
= 0 

When equating a fraction to zero, it is the top line, the numerator, which must equal zero. 

Therefore (x − 1)(x + 1) = 0 

from which x − 1 = 0 or x + 1 = 0, and from these equations we find that x = 1 or x = −1. 

The y coordinates of the stationary points are found from y =
x

x 2)1( −
 

When x = 1: y = 0. 

When x = −1: y = −4. 

We conclude that stationary points occur at (1, 0) and (−1,−4). 

We now have to decide whether these are maximum points or minimum points. We could 

calculate f”(x) and use the second derivative test as in the previous example. This would 

involve differentiating 
2

)1)(1(
x

xx +−
 which is possible but perhaps rather fearsome! Is 

there an alternative way? The answer is yes. We can look at how f’(x) changes as we 

move through the stationary point. In essence, we can find out what happens to f”(x) 

without actually calculating it. 

First consider the point at x = −1. We look at what is happening a little bit before the 

point where x = −1, and a little bit afterwards. Often we express the idea of ‘a little bit 

before’ and ‘a little bit afterwards’ in the following way:  

We can write −1 − � to represent a little bit less than −1, and −1 + � to represent a little bit 

more. The symbol � is the Greek letter epsilon. It represents a small positive quantity, say 

0.1. Then −1 − � would be −1.1, just a little less than −1. Similarly −1 + � would be −0.9, 

just a little more than −1. 

We now have a look at f’(x); not its value, but its sign. 

When x = −1 − �, say −1.1, f’(x) is positive (i.e. before x = -1, the function f(x) increases) 
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When x = −1 we already know that f’(x) =0 (i.e. x = -1 is a stationary point, which may 

be a turning point) 

When x = −1 + �, say −0.9, f’(x) is negative (i.e. after x = -1 the function f(x) decreases) 

We can summarise this information as follows: at x = -1 there is a local maximum, in 

other words the stationary point at (−1,−4) is a maximum turning point.  

Then we turn to the point (1, 0). We carry out a similar analysis, looking at the sign of 

f’(x) at x = 1− �, x = 1, and x = 1 + �.  

Signs of f’(x) are −, 0, +, which implies that the point is a minimum. 

This, so-called first derivative test, is also the way to do it if f’’(x) is zero, in which case 

the second derivative test does not work.  
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