
Conics  

onic sections are the curves which result from the intersection of a plane with a cone. 
These curves were studied and revered by the ancient Greeks, and were written about 
extensively by both Euclid and Appolonius. They remain important today, partly for 
their many and diverse applications. 

Although to most people the word “cone” conjures up an image of a solid figure with a 
round base and a pointed top, to a mathematician a cone is a surface, one which is obtained in 
a very precise way. 

Imagine a vertical line, and a second line intersecting it at some angle � (phi). We will 
call the vertical line the axis, and the second line the generator. The angle � between them is 
called the vertex angle. Now imagine grasping the axis between thumb and forefinger on 
either side of its point of intersection with the generator, and twirling it. The generator will 
sweep out a surface, as shown in the diagram. It is this surface which we call a cone. 

 
 
Notice that a cone has an upper half and a lower half (called the nappes), and that these are 
joined at a single point, called the vertex. Notice also that the nappes extend indefinitely far 
both upwards and downwards. A cone is thus completely determined by its vertex angle. 

Now, in intersecting a flat plane with a cone, we have three choices, depending on the 
angle the plane makes to the vertical axis of the cone. First, we may choose our plane to have 
a greater angle to the vertical than does the generator of the cone, in which case the plane 
must cut right through one of the nappes. This results in a closed curve called an ellipse. 
Second, our plane may have exactly the same angle to the vertical axis as the generator of the 
cone, so that it is parallel to the side of the cone. The resulting open curve is called a 
parabola. Finally, the plane may have a smaller angle to the vertical axis (that is, the plane is 
steeper than the generator), in which case the plane will cut both nappes of the cone. The 
resulting curve is called a hyperbola, and has two disjoint “branches.” 

 



 
 

Notice that if the plane is actually perpendicular to the axis (that is, it is horizontal) then we 

get a circle – showing that a circle is really a special kind of ellipse. Also, if the intersecting 

plane passes through the vertex then we get the so-called degenerate conics; a single point in 

the case of an ellipse, a line in the case of a parabola, and two intersecting lines in the case of 

a hyperbola. 

 

ELLIPSE 

The set of all points in the plane, the sum of whose distances from two fixed points, called the 

foci, is a constant. (“Foci” is the plural of “focus) 

 
 

For reasons that will become apparent, we will denote the sum of these distances by 2a. 

We see from the definition that an ellipse has two axes of symmetry, the larger of which 

we call the major axis and the smaller the minor axis. The two points at the ends of the ellipse 

(on the major axis) are called the vertices. It happens that the length of the major axis is 2a, 

the sum of the distances from any point on the ellipse to its foci. If we call the length of the 



minor axis 2b and the distance between the foci 2c (where c = e, called eccentricity), then the 

Pythagorean Theorem yields the relationship b2 + c2 = a2: 

 
 

By imposing coordinate axes in this convenient manner, we see that the vertices are at the x 

intercepts, at a and -a, and that the y-intercepts are at b and -b. Let the variable point P on the 

ellipse be given the coordinates (x, y). We may then apply the distance formula for the 

distances from P to F1 and from P to F2 to express our geometrical definition of the ellipse in 

the language of algebra: 

 
 

Substituting a2 – b2 for c2 and using a little algebra, we can then derive the standard equation 

for an ellipse centred at the origin, 

 
 

where a and b are the lengths of the semimajor and semiminor axes, respectively. (If the 

major axis of the ellipse is vertical, exchange a and b in the equation.) The points (a, 0) and   

(-a, 0) are called the vertices of the ellipse. If the ellipse is translated up/down or left/right, so 

that its centre is at (h, k), then the equation takes the form 

 



 

If a = b, we have the special case of an ellipse whose foci coincide at the centre – that is, a 

circle of radius a. 

The ellipse has the following remarkable reflection property. Let P be any point on the 

ellipse, and construct the line segments joining P to the foci. Then these lines make equal 

angles to the tangent line at P. 

 
 

Consequently, any ray emanating from one focus will always reflect off of the inside of the 

ellipse in such a way as to go straight to the other focus. Architects have exploited this 

property in many famous buildings. The “whisper chamber” in the United States Capitol is 

one; stand at one focus and whisper, and anyone at the other focus can hear you with perfect 

clarity, even though they are much too far away from you to hear a whisper normally. The 

Mormon Tabernacle in Salt Lake City was also designed as an ellipse (indeed, it is the top 

half of an ellipsoid), to provide a perfect acoustical environment for choral and organ music. 

 

Geometric Construction 

The geometric construction of an ellipse can easily be accomplished with some very simple 

tools: a piece of string, a pencil, two pins, and a piece of paper. Simply stick the two pieces of 

string into the piece of paper using the two pins. Pull the string tight (using the pencil) until a 

triangle is built with the pencil and the two pins as vertices. Now, keeping the string pulled 

tight, move the pencil around until the ellipse is traced out. (See the enclosed FIGURE E2.)  



 
Some other terms need to be introduced at this point of the discussion. The line through the 

foci intersects the ellipse at two points, known as vertices. (Vertices is the plural of the term 

vertex.) This line segment joining the vertices is called the major axis and its midpoint is 

called the centre of the ellipse. The minor axis is the line segment perpendicular to the major 

axis which also goes through the centre and crosses the ellipse at two points. (By the way, 

these two points are called minor vertices in the Slovak literature) See FIGURE E3 for a 

graphical view of some of these key terms.  

 
Example 1 

Consider the equation  

 
Given our comments above, this equation yields an ellipse. We see that a = 5 and b = 3 

and the graph of this ellipse is the following:  



 
Note the relationship of a and b to the graph. We see that the value of a yields half the length 

of the major axis. Equivalently, we can say that the vertices are found by travelling down the 

major axis exactly a units from the centre. We also see that half the length of the minor axis is 

exactly b.  

 

Example 2 

 
It turns out that this ellipse looks very similar to the ellipse in Example 1. The major 

difference is that this ellipse is now oriented along the vertical axis as opposed to the 

horizontal. In other words, the major axis of this ellipse is vertical, not horizontal. See 

FIGURE E5.  

 
Example 3 

Find the standard form of the equation of the ellipse with foci at (0, 5) and (0, -5) and with a 

major axis of length 26.  



We must interpret the information given to us in the above problem. First, we see that the foci 

are 10 units apart (and live on the y-axis). Thus, we have e = 5 and a = 13, since the length of 

the major axis is 26. Since the centre of the ellipse is at (0, 0), the vertices of the ellipse must 

be at (0, 13) and (0, -13). Finally, we just need to find out the value of b. From the 

relationship  e2 = a2 – b2  

we know that  52 = 132 – b2 

This can be simplified to  b2 = 169 – 25 = 144 

Thus we see that   b = 12 

Now we can write the standard equation of the ellipse. It is  

 
 

Example 4: Sketch the graph of the ellipse whose equation is  

 
Again, let's pull as much information out of the equation as possible. We see that the centre of 

the ellipse is (3, -1). Next, note that  

a = 7 and b = 5 

 

Since a is in the denominator of the term involving the variable x, we know that the major 

axis of this ellipse is horizontal (parallel with the x-axis). Moreover, we know that the major 

axis has length 14 and the vertices occur at points which are 7 units in either direction from 

the centre. This all implies that the vertices are at (3 + 7, -1) and (3 – 7, -1), which could also 

be written as (10, -1) and (-4, -1). As a sidelight, we also know that the endpoints of the minor 

axis are exactly 5 units above and below the centre, which places them at the points (3, 4) and 

(3, -6).  

From this information, we can easily plot the ellipse in question. For the sake of completion, 

let's quickly determine the location of the foci. Again using the relationship  

 
we know that  

 

Thus, the foci are exactly 24 units to the left and right of the centre of the ellipse.  

Finally, a sketch of the graph is given in Figure E7.  



 
Example 5 

Sketch the graph of the ellipse whose equation is  

 
At this stage of our conics development, we really have not dealt with the equation of a conic 

in non-standard form. Recall that this is, however, a valid equation for a conic and it happens 

to be an ellipse. Our first goal is to rewrite this equation into standard form and then to 

interpret this equation as we sketch the graph. The technique involved in rewriting this 

equation into standard form is known as “completing the square.”  

We see that  

 
is equivalent to  

 
Now we want to fill in the apparent gaps that have been inserted in the parentheses above. 

This “filling in” is completing the square. We want to write in the number that will make each 

set of parentheses a perfect square. We do that now:  

 
Note that, when we add 9 to the left-hand side of the equation, we must also add it to the 

right-hand side. Also, we are not really adding 1 to the left-hand side; we are really adding 4 

since we multiply the 1 by the 4 that is outside the parentheses. Hence, we must also add 4 to 

the right-hand side.  

Rewriting our equation now yields  

 
or  

 



and we have successfully transformed the equation originally given to us into the standard 

equation of an ellipse. This ellipse has centre (3, -1) and has values a = 2, b = 1 

 

As noted in previous examples, because a is in the denominator of the term involving the 

variable x, we know that the major axis of this ellipse is horizontal (parallel with the x-axis).  

 
 

 HYPERBOLA 

The set of all points in the plane, the difference of whose distances from two fixed points, 

called the foci, remains constant. 

 
 

Mimicking our procedure with ellipses, we will choose the constant 2a to represent the 

difference of these distances, that is, PF1 – PF2 = 2a. We will call the two points of the 

hyperbola which lie on the line connecting the foci the vertices, and we then see that the 

distance between the vertices must be 2a. Also, we will call the distance between the foci 2e. 

Finally, we will define the constant b by  e2 = a2+  b2. (We may do this since evidently e > a.) 

Placing coordinate axes at the centre as before, we obtain this picture: 



 
 

Applying the distance formulas and substituting for e as we did in the previous cases, we can 

derive the standard formula of a hyperbola: 

 
 

We note that solving this equation for y yields 

 
 

and letting x become arbitrarily large causes this expression to become arbitrarily close to 

 
 

Thus we see that the crisscrossing lines in the diagram above are asymptotes for the 

hyperbola, that is, the curve becomes indefinitely close to these lines as the absolute value of 

x grows without bound. 

As before, if the principal axis of the hyperbola is vertical instead of horizontal, we 

switch the roles of a and b. We may also translate the hyperbola up/down and back/forth, 

placing the centre at (h, k) by modifying our equation thusly: 

 
 

The reflection property of the hyperbola is of great importance in optics. Let P be any 



point on one branch of the hyperbola. Then the line segments joining P to each of the foci 

form an angle which is bisected by the tangent line at P. 

 
 

Each hyperbola consists of two branches. The line segment which connects the two foci 

intersects the hyperbola at two points, called the vertices. The line segment which ends at 

these vertices is called the transverse axis and the midpoint of this line is called the centre of 

the hyperbola. See Figure H1 for a sketch of a hyperbola with these pieces identified. 

 
Note that, as in the case of the ellipse, a hyperbola can have a vertical or horizontal 

orientation. 

We now turn our attention to the standard equation of a hyperbola. We say that the standard 

equation of a hyperbola cantered at the origin is given by  

 
if the transverse axis is horizontal, or  

 
if the transverse axis is vertical.  



Notice a very important difference in the notation of the equation of a hyperbola compared to 

that of the ellipse. We see that a always corresponds to the positive term in the equation of 

the ellipse. The relationship of a and b does not determine the orientation of the hyperbola. 

(Recall that the size of a and b was used in the section on the ellipse to determine the 

orientation of the ellipse.) In the case of the hyperbola, the variable in the “positive” term of 

the equation determines the orientation of the hyperbola. Hence, if the variable x is in the 

positive term of the equation, as it is in the equation 

 
then the hyperbola is oriented as follows: 

 
If the variable y is in the positive term of the equation, as it is in the equation 

 
then we see the following type of hyperbola: 

 



Note that the vertices are always a units from the centre of the hyperbola, and the distance e 

of the foci from the centre of the hyperbola can be determined using a, b, and the following 

equality: e2 = a2+  b2 

 

We will use this relationship often, so keep it in mind. 

The next question you might ask is this: “What happens to the equation if the centre of the 

hyperbola is not (0,0)?” As in the case of the ellipse, if the centre of the hyperbola is (h, k), 

then the equation of the hyperbola becomes 

 
if the transverse axis is horizontal, or 

 
if the transverse axis is vertical. 

Now in the case of a hyperbola, the distance between the foci is greater than the distance 

between the vertices. Hence, in the case of a hyperbola, 

 
Recall that for the ellipse, 

 
Two final terms that we must mention are asymptotes and the conjugate axis. The two 

branches of a hyperbola are “bounded by” two straight lines, known as asymptotes. These 

asymptotes are easily drawn once one plots the vertices and the points (h, k + b) and (h, k – b) 

and draws the rectangle which goes through these four points. The line segment joining (h, 

k + b) and (h, k – b) is called the conjugate axis. The asymptotes then are simply the lines 

which go through the corners of the rectangle. (See FIGURE H4.) 

 



Example 1: Consider the equation  

 
Given our comments above, this equation yields a hyperbola. (Note the difference between 

this equation and that in Example 1 of the section on ellipses.) We see that a =5, and b = 3 and 

the graph of this hyperbola is the following:  

 
Note also, as we finish this example, that the equations of the asymptotes for this hyperbola 

are  

 
and  

 
Example 2 

Consider the equation  

 
Note that the only difference between this example and the previous one is that the 9 and 25 

have traded places. How does this change the shape of the hyperbola? Is there a change in the 

orientation from horizontal to vertical? The answer is no. Recall that orientation of a 

hyperbola is not determined by the sizes of the denominators in the terms of the standard 

equation of the hyperbola. Rather, orientation is determined by which variable (x or y) is in 

the ``positive'' term. Hence, as is the case in the previous example, this hyperbola is also 

horizontally oriented. The switch between the 9 and 25 simply changes the shape of the 

branches. The openings of the branches appear to be wider. See FIGURE H5.  



 
Note that difference in shape (between this example and the previous) can also be seen in the 

equations of the asymptotes. Now we see that  

 
and  

 

Thus, the slope of the asymptotes is now
3
5

, not 
5
3

as in the previous example.  

Example 3 

Find the standard form of the equation of the hyperbola with foci at (0, 9) and (0, -9) and 

transverse axis of length 6.  

We must interpret the information given to us in the above problem. First, we see that the foci 

are 18 units apart (and live on the y--axis). Thus, we have e = 9. Moreover, a = 3 

since the length of the transverse axis is 6. Since the centre of the hyperbola is at (0, 0), the 

vertices of the hyperbola must be at (0, 3) and (0, -3). Finally, we just need to find out the 

value of b. From the relationship  

 
we know that  

 
This can be simplified to  

 
Thus we see that  

 
Now we can write the standard equation of the hyperbola. It is  

 



Example 4 

Sketch the graph of the hyperbola whose equation is  

 
Again, let's pull as much information out of the equation as possible. We see that the centre of 

the hyperbola is (3, -1). Next, note that a = 7 and b = 5. 

Since the ``positive'' term in the equation involves the variable x, we know that the transverse 

axis of this hyperbola is horizontal (parallel with the x--axis). Moreover, we know that the 

transverse axis has length 14 and the vertices occur at points which are 7 units in either 

direction of the centre. This all implies that the vertices are at (3 + 7, -1) and (3 – 7, -1), which 

could also be written as (10, -1) and (-4, -1). As a sidelight, we also know that the endpoints 

of the conjugate axis are exactly 5 units above and below the centre, which places them at the 

points (3, 4) and (3, -6).  

From this information, we can easily plot the hyperbola in question. For the sake of 

completion, let's quickly determine the location of the foci. Again using the relationship  

 
we know that  

 

Thus, the foci are exactly 74 units to the left and right of the centre of the hyperbola.  

Finally, a sketch of the graph is given in Figure H7.  

 
Example 5 

Sketch the graph of the hyperbola whose equation is  

 



Note that this is a valid equation for a hyperbola, even though it is not in standard form. Our 

first goal is to rewrite this equation into standard form and then to interpret this equation as 

we sketch the graph. As we have seen in previous work, we need to use the technique of 

``completing the square'' to work this out.  

We see that  

 
is equivalent to  

 
Now we want to fill in the apparent gaps that have been inserted in the parentheses above. 

This ``filling in'' is completing the square. We want to write in the number that will make each 

set of parentheses a perfect square. We do that now:  

 
Note that, when we add 9 to the left--hand side of the equation, we must also add it to the 

right--hand side. Also, we are not really adding 1 to the left--hand side; we are really 

subtracting 4 since we multiply the 1 by the -4 that is outside the parentheses. Hence, we must 

also subtract 4 from the right--hand side.  

Rewriting our equation now yields  

 
or  

 
and we have successfully transformed the equation originally given to us into the standard 

equation of a hyperbola. This hyperbola has centre (3, -1) and has values a = 4 and b = 2.  

Since the variable y is in the ``positive'' term here, we know that the transverse axis of this 

hyperbola is vertical (parallel with the y--axis).  

The graph of this hyperbola is given in Figure H8.  



 
 

PARABOLA 

The set of all points in the plane whose distances from a fixed point, called the focus, and a 

fixed line, called the directrix, are always equal. 

 
 

The point directly between – and hence closest to – the focus and the directrix is called the 

vertex of the parabola. 

To derive the equation of a parabola in rectangular coordinates, we again choose a 

convenient location for the axes, placing the origin at the vertex so that the y-axis is the axis 

of symmetry. We denote the distance from the focus to the directrix by p (called parameter). 

Then distance from the vertex to the focus and to the directrix is the same, i.e. 
2
p

. 

 Then the standard equation of a parabola is y2 = ± 2px (when axis is coincident with x – axis) 

or        x2 = ± 2py (when axis is coincident with y- axis). 

This one is the equation of a parabola opening upwards, with its vertex at the origin. If we 



introduce a negative sign, we get a parabola opening downwards. If we interchange the roles 

of x and y, we get a parabola opening to the right (or to the left if there is a negative). We may 

translate the parabola up/down or back/forth, putting the vertex at the point (h, k) if we write 

our equation as (x – h)2 = 2 p (y – k) 

The reflection property of parabolas is very important because it has so many practical uses. 

Let P be any point on the parabola. Construct the line segment joining P to the focus, and a 

ray through P that is parallel to the axis of symmetry. The line segment and ray will always 

make equal angles to the tangent line at P. Consequently, any ray emanating from the focus 

will reflect off of the parabola so as to point directly outwards, parallel to the axis. This 

property is made use of in the design of flashlights, headlights, and spotlights, for instance. 

Conversely, any ray entering the parabola that is parallel to the axis will be reflected to the 

focus. This property is exploited in the design of radio and satellite receiving dishes, and solar 

collectors. 

 
 

The reflection property of parabolas is related to the curious property that the tangent lines at 

the endpoints of any chord through the focus (as shown above) intersect on the directrix, and 

always do so in a right angle. 

Parabolas are also important in the study of ballistics, the movement of a body under the 

force of gravity. 

 

Note that the graph of a parabola is similar to one branch of a hyperbola. However, you 

should realize that a parabola is not simply one branch of a hyperbola. Indeed, the branches of 

a hyperbola approach linear asymptotes, while a parabola does not do so.  



Several other terms exist which are associated with a parabola. The midpoint between the 

focus and directrix of the parabola is called the vertex and the line passing through the focus 

and vertex is called the axis of the parabola. (This is similar to the major axis of the ellipse 

and the transverse axis of the hyperbola.) See Figure P2.  

 
 

  

Thus, we see that there are four different orientations of parabolas, which depend on a) which 

variable is squared (x or y) and b) whether d is positive or negative.  

 

Example 1 

Consider the equation  

 
Given our comments above, this equation yields a parabola. (Note that this equation only has 

one square term. This indicates that we have a parabola here, as opposed to an ellipse or 

hyperbola.)  



The value of p in this case is fairly clear; namely, p = 4 

 

The vertex of this parabola is at (0, 0) and the axis of this parabola is vertical (since the 

variable x is the squared variable.) Thus, the focus of this parabola is situated at the point (0, 

2) and the directrix is the horizontal line 4 units below the vertex. Thus, the equation of the 

directrix is given by  

 
See Figure P7 for a sketch of this parabola.  

 
 

Example 2 

 
Again, realize that this is a parabola (as opposed to an ellipse or a hyperbola) because it only 

has one squared term (as opposed to two). Because the y is squared instead of the x, we 

automatically know that this parabola has a horizontal axis. The only other question dealing 

with orientation is whether the parabola opens to the left or to the right.  

We note here that p = -8. 

This indicates that the parabola will indeed open to the left. The vertex is again (0, 0), as in 

the first example, and the focus will now occur at the point (-4, 0). Finally, the equation of the 

directrix is x = 4.  

See Figure P8 for the graph of this parabola.  



 
Example 3 

Consider the equation  

 
This is the standard equation of the parabola with vertex (3, 5) and p = 12. 

Hence, because the axis is vertical, we know that the focus is exactly 6 units above the vertex, 

placing it at (3, 11). A sketch of this parabola can be found in Figure P9.  

 
Example 4 

Find the standard form of the equation of the parabola with vertex (2, 1) and focus (5, 1).  

We see several things from the information given. First, note that the axis of this parabola is 

oriented horizontally. Next, note that p = 6.  

Thus, we can quickly write down the standard equation of this parabola. It is  

 
See Figure P10 for a sketch of this parabola.  



 
Example 5 

Determine the vertex, focus, and directrix of the parabola given by the equation  

 
In order to accomplish this task, we need to rewrite the equation in standard form. This will 

again involve completing the square. We see that this is accomplished by the following:  

 
so  

 
Factoring out -8 from the right--hand side leaves  

 
We have now rewritten our equation into standard form. Note that the vertex is (-2, -3) and p 

= -4.  

We also see that the axis is horizontal and that the parabola opens to the left (since p is 

negative.) Thus, the directrix is the vertical line that lies 2 units to the right of the vertex, 

yielding the equation x = 0.  

Finally, the focus is the point 2 units to the right of the vertex, which in this case is the point 

.  

 


