
PURE IMAGINARY NUMBERS  
 
The square root of a negative number (i.e., 51 −− , ) is called a pure imaginary number. 
Since by definition 155 −⋅=−  it is convenient to introduce the symbol i = 1−  and to 
adopt 55 i=− as the standard form for these numbers. 
 
The symbol i has the property 12 −=i and for higher integral powers we have 

( ) iiiii −=−=⋅= 123  
1224 =⋅= iii etc. 

The use of the standard form simplifies the operation on pure imaginaries and eliminates the 
possibility of certain common errors. Thus, 

i63649 =−=⋅− , but ( )( ) 662349 2 −===−⋅− iii  
 
Notice the cyclic nature of the powers of i. ,ii k =+14 124 −=+ki , ,ii k −=+34 144 =+ki  for every 
natural number k. 
 
COMPLEX NUMBERS 
 
 A number bia + , where a and b are real numbers, is called a complex number. The first term 
a is called the real part of the complex number and the second term bi is called the pure 
imaginary part. 
Complex numbers may be thought of as including all real numbers and all pure imaginary 
numbers. For example i055 +=  and .ii 303 +=  
Two complex numbers bia + and dic + are said to be equal if and only if ca = and db = . 
The conjugate of a complex number bia +  is the complex number bia − .Thus, i32 + and 

i32 − is a pair of conjugate complex numbers. 
 
ALGEBRAIC OPERATIONS 
 
(1) ADDITION. To add complex numbers, add the real parts and add the pure imaginary 
parts. EXAMPLE 1: ( ) ( ) ( ) ( ) iiii 2653425432 −=−++=−++  
 
(2) SUBTRACTION. To subtract two complex numbers, subtract the real parts and subtract 
the pure imaginary parts. EXAMPLE 2: ( ) ( ) ( ) ( )( ) iiii 8253425432 +−=−−+−=−−+  
 
(3) MULTIPLICATION. To multiply two complex numbers, carry out the multiplication as if 
the numbers were ordinary binomials and replace 2i  by -1. 
EXAMPLE 3: ( )( ) ( ) iiiiii 2231152815285432 2 +=−−+=−+=−+  
 
(4) DIVISION. To divide two complex numbers, multiply both numerator and denominator of 
the fraction by the conjugate of the denominator. 
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Note the form of the result; it is neither 
41

227 i+− nor ( )i227
41
1

+− . 
 
 



GRAPHIC REPRESENTATION OF COMPLEX NUMBERS  
 
The complex number yix + may be represented graphically by the point P (see Fig. 1) whose 
rectangular coordinates are [ ]yx, . The point O, having coordinates [ ]00, , represents the 
complex number 000 =+ i . All points on the x axis have coordinates of the form [ ]0,x  and 
correspond to real numbers .xix =+ 0  For this reason; the x axis is called the axis of reals. 
All points on the y axis have coordinates of the form [ ]y,0 and correspond to pure imaginary 
numbers yiyi =+0 .The y axis is called the axis of imaginaries. The plane on which the 
complex numbers are represented is called the complex plane. See Fig. 1. In addition to 
representing a complex number by a point P in the complex plane, the number may be 
represented by the directed line segment or vector OP. See Fig. 2.The vector OP is sometimes 

denoted by 
→

OP and is the directed line segment beginning at O and terminating at P. 
 

 
 
 
 
 
 
 
 
 
 

                            Fig. 1                                                                           Fig. 2       
 
GRAPHIC REPRESENTATION OF ADDITION AND SUBTRACTION.  
 
Let 111 iyxz += and 222 iyxz += be two complex numbers. The vector representation of these 
numbers suggests the illustrated parallelogram law for determining graphically the 
sum ( ) ( )221121 iyxiyxzz +++=+ , since the coordinates of the endpoint of the vector 

21 zz + must be, for each of the x coordinates and the y coordinates the sum of the 
corresponding x or y values. See Fig. 3.  
Since ( ) ( ) ( ) ( )2211221121 iyxiyxiyxiyxzz −−++=+−+=− , the difference 21 zz − of the two 
complex numbers may be obtained graphically by applying the parallelogram law to 

11 iyx + and 22 iyx −− .(See Fig. 4.) 
In Fig. 5 both the sum OR 21 zz += and the difference OS 21 zz −= are shown. Note that the 
segments OS and 12 PP (the other diagonal of OP2RP1) are congruent.  
 
                     Fig. 3                                                          Fig. 4                                                         Fig. 5                      

 
 
 
 
 
                                                                                                               
                                                                                                          
                                                                                                            
 

 
 
 
 
 



POLAR OR TRIGONOMETRIC FORM OF COMPLEX NUMBERS 
 
Let the complex number yix + be represented (Fig. 6) by the vector OP. This vector (and 
hence the complex number) may be described in terms of the length r of the vector and any 
positive angle y which the vector makes with the positive x axis (axis of positive reals).The 
number  22 yxr += is called the modulus or absolute value of the complex number. 
The angleφ , called the amplitude of the complex number, is usually chosen as the smallest, 

positive angle for which 
x
y

=φtan but at times it will be found more convenient to choose 

some other angle coterminal with it. 
From Fig. 6, φcosrx = ; and φsinry = ; then ( )φφφφ sincossincos irirriyxz +=+=+= . 
We call ( )φφ sincos irz += the polar or trigonometric form and iyxz += the rectangular 
form of the complex number z. 
 

 
                        Fig. 6 
 
EXAMPLE 5:  
Express 31 iz −= in polar form. 

The modulus is ( ) ( ) 231 22 =−+=r  

Since 3
1

3
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−
==

x
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φtan , the amplitude φ is either o120  or o300  

.Now we know that P lies in quadrant IV; hence, o300=φ and the required polar form is 
( ) ( )oo 3003002 sincossincos iirz +=+= φφ  

Note that z may also be represented in polar form by 

( ) ( )[ ]oooo 3603003603002 ninz +++= sincos  where n is any integer. 

 
EXAMPLE 6:  
Express the complex number ( )oo 2102108 sincos iz += in rectangular form. 

Since 
2

3210 −
=ocos and 
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=+= oo sincos  is required rectangular form. 

 
 
 
 



MULTIPLICATION AND DIVISION IN POLAR FORM 
 
MULTIPLICATION.  
The modulus of the product of two complex numbers is the product of their moduli, and the 
amplitude of the product is the sum of their amplitudes. 
 
DIVISION.  
The modulus of the quotient of two complex numbers is the modulus of the dividend divided 
by the modulus of the divisor, and the amplitude of the quotient is the amplitude of the 
dividend minus the amplitude of the divisor.  
 
EXAMPLE 7: 

Find (a) the product z1z2, (b) the quotient
2

1

z
z , and (c) the quotient 

1
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z
z where 

( )oo 30030021 sincos iz += and ( )oo 21021082 sincos iz +=  
 
(a) The modulus of the product is 2(8) = 16. 
     The amplitude is ooo 510210300 =+ , but following the convention, we shall use the   
     smallest positive coterminal angle ooo 150360510 =− .  
     Thus, z1z2 = ( )oo 15015016 sincos i+  

 (b) The modulus of the quotient 
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      and the amplitude is ooo 90210300 =− . 

       Thus, ( )oo 9090
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(c) The modulus of the quotient 
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     The amplitude is ooo 90300210 −=− , but we shall use the smallest positive coterminal   
     angle ooo 27036090 =+− . 

     Thus ( )oo 2702704
1
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NOTE: From Examples 5 and 6 the numbers are 311 iz −= and iz 4342 −−= in 
rectangular form. THEN, 

( )( ) ( )oo 150150168384343121 sincos iiiizz +=+−=−−−=  
and 

( )oo 9090
4
1

4
1

64
16

64
3412434

434
434

434
31

2

1 sincos iiiii
i
i

i
i

z
z

+===
+++−

=
+−
+−

⋅
−−

−
=  

 
 
 
 
 
 
 



DE MOIVRE’S THEOREM.  
 
If n is any rational number, ( )[ ] ( )φφφφ ninrir nn sincossincos +=+  
A proof of this theorem is a verification for n = 2 and n = 3  
Let ( )φφ sincos irz +=  
For n = 2 

( )[ ] ( )[ ] ( ) ( )[ ] ( )φφφφφφφφφφ 222 22222 sincoscossinsincossincossincos iriririrzzz +=+−=++=⋅=
For n = 3 

( ) ( )[ ] ( ) ( )[ ] =++−=+⋅+=⋅= φφφφφφφφφφφφ sincoscossinsinsincoscossincossincos 222222 3223 iririrzzz
                                                                          ( )φφ 333 sincos ir +=  
EXAMPLE 8: 

( ) ( )[ ] =+=−
1010

33033023 oo sincos ii  ( ) =⋅+⋅ oo 3301033010210 sincos i   

                ( ) 3512512
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+=+= oo sincos  

 
ROOTS OF COMPLEX NUMBERS 
 
We state, without proof, the theorem: 
A complex number ( )φφ sincos irbia +=+  has exactly n distinct nth roots. 
The procedure for determining these roots is given in Example 9. 
 
EXAMPLE 9: Find all fifth roots of i44 − . 
The usual polar form of i44 − = ( )oo 31531524 sincos i+ , but we shall need the more 

general form ( ) ( )[ ]oooo 36031536031524 kikz +++= sincos , where k is any integer, 
including zero. 
 
Using De Moiver’s theorem, a fifth root of i44 −  is given by 

( ) ( )[ ][ ] ( ) =
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+

+
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1
5
1 oooo

oooo kikkik sincossincos

( ) ( )[ ]oooo 726372632 kik +++= sincos  
Assigning in turn the values k = 0; 1; . . ., we find 
k = 0: [ ]oo 63632 sincos i+ = R1 

k = 1: [ ]oo 1351352 sincos i+ = R2 

k = 2: [ ]oo 2072072 sincos i+ = R3 

k = 3: [ ]oo 2792792 sincos i+ = R4 

k = 4: [ ]oo 3513512 sincos i+ = R5 

k = 5: [ ]oo 4234232 sincos i+  = [ ]oo 63632 sincos i+ = R1, etc: 

Thus, the five fifth roots are obtained by assigning the values  
0; 1; 2; 3; 4 (i.e.; 0; 1; 2; 3; . . . ; n-1) to k. 
The modulus of each of the roots is; hence these roots lie on a circle of radius 
with centre at the origin. The difference in amplitude of two consecutive roots is 72 o ; 
hence the roots are equally spaced on this circle, as shown in Fig. 8. 
 



Exercise 1 
 
1, Perform the indicated operations, simplify, and write the results in the form a+bi. 
a) ( ) ( ) =+−+− ii 7543  
b) ( ) ( ) =+−−+ ii 3124  
c) ( )( ) =−+ ii 232  
d) ( )( ) =−+ ii 4343  

e) =
−
−

i
i

32
23  

f) =
+

+
i
i

2
31  

 
2, Find x and y such that 2x – yi = 4+3i 
 
3, Represent graphically (as a vector) the following complex numbers: 
a) 3 + 2i 
b) 2 – i 
c) -2 + i 
d) -1 – 3i 
 
4, Express each of following complex number z in polar form (trigonometric form) 
a) -1 + i 3  
b) 6 3  + 6i 
c) 2 - 2i 
d) -3 
e) 4i 
f) -3 – 4i 
 
5, Express each of following complex numbers z in rectangular form 
a) ( )oo 240sin240cos4 i+  
b) ( )oo 315sin315cos2 i+  
c) ( )oo 90sin90cos3 i+  
d) ( )oo 128sin128cos5 i+  
 
6, Perform the indicated operations, giving the results in both forms  
a) ( )oo 170sin170cos5 i+ x ( )oo 55sin55cos i+  
b) ( )oo 50sin50cos2 i+ x ( )oo 40sin40cos3 i+  

c) ( )oo 110sin110cos6 i+ x ( )oo 212sin212cos
2
1 i+  

d) ( ) ( )oooo 65sin65cos2305sin305cos10 ii +÷+  
e) ( ) ( )oooo 40sin40cos2220sin220cos4 ii +÷+  
f) ( ) ( )oooo 75sin75cos3230sin230cos6 ii +÷+  
 
 
 



7, Express each of following complex number z in polar form (trigonometric form), perform 
the indicated operation, and give the result in rectangular form 
a) ( )( )ii ++− 331  
b) ( )( )322333 ii −−−  
c) ( ) ( )ii 232344 +−÷−  
d) ( )i+−÷− 32  
e) ( )ii 336 −−÷  
f) ( )( )3131 ii ++  
g) ( )( )ii ++ 223  
h) ( ) ( )ii 3232 −÷+  
 
 
Exercise 2 
 
1, Evaluate each of the following using De Moivre`s theorem and express each result in 
rectangular form: 

a) ( )4
31 i+  

b) ( )5
3 i−  

c) ( )101 i+−  

d) ( )432 i+  
 
2, Find the indicated roots in rectangular form if possible. 
a) square roots of 322 i−  
b) Fourth roots of 388 i−−  
c) Cube roots of  2424 i+−  
d) Cube roots of 1 
e) Fourth roots of i 
f) Sixth roots of -1 
g) Fourth roots of -16i 
h) Fifth roots of i31+  
  


