POLYNOMIALS IN GENERAL

If $f(x)=\mathbf{a x}^{\mathbf{n}}+\mathbf{b} \mathbf{x}^{\mathrm{n}-\mathbf{1}}+\mathbf{c} \mathbf{x}^{\mathbf{n}-\mathbf{2}}+\ldots+\mathbf{k}, \mathrm{a} \neq 0$, then $\mathrm{f}(\mathrm{x})$ is said to be a polynomial of degree (or order) \mathbf{n} in the variable \mathbf{x}.

If we consider the equation $\mathrm{f}(\mathrm{x})=0$ this will have up to \mathbf{n} real roots. The number of real roots will depend upon the values of $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d}.

Horner's scheme: the first line consists of the coefficients of the divisor; the second line contains the multiples of a number in the third line with the suspicious 'root'. The last line is the sum of a number in the $1^{\text {st }}$ line with the number in the $2^{\text {nd }}$ line.
$\left(x^{4}-2 x^{3}+4 x^{2}-6 x+8\right):(x-1)=x^{3}-x^{2}+3 x-3+5 / x-1$

	1	-2	4	-6	8
1		$1.1=1$	$-1.1=-1$	$3.1=3$	$-3.1=-3$
	1	$1-2=-1$	$-1+4=3$	$3-6=-3$	$-3+8=\mathbf{5}$

The last window contains a remainder >5 is the remainder; if there is zero in the last window, number 1 is a root. Numbers in the last line are the coefficients before $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}, \mathrm{x}^{0}$.

If the function $f(x)$, a polynomial in x, is divided by $(x-a)$ until the remainder does not contain x, i.e. it is a constant, then the remainder is equal to $f(a)$.

Proof:
Suppose that when $\mathbf{f}(\mathbf{x})$ is divided by $(\mathbf{x}-\mathbf{a})$, the quotient is $\mathbf{g}(\mathbf{x})$ and the remainder is \mathbf{k}, then $\mathrm{f}(\mathrm{x}) \equiv(\mathrm{x}-\mathrm{a}) . \mathrm{g}(\mathrm{x})+\mathrm{k}$
Substituting $\mathrm{x}=\mathrm{a}$ in both sides of this identity
$f(a)=0 . g(a)+k$
$f(a)=k$
So the remainder when $f(x)$ is divided by ($x-a$) us equal to $f(a)$.
By a similar argument, when $f(x)$ is divided by $(c x-a)$ the remainder is $f(a / c)$.

Example: Find the remainder when $8 x^{3}-4 x^{2}+6 x+7$ is divided by $(x-1)$
Using the remainder theorem, when $f(x)$ is divided by $(x-1)$, the remainder is $f(1)$.
$f(1)=8.1-4.1+6.1+7=17$
The remainder is 17 .

RELATION OF DIVISION

$\mathrm{a}, \mathrm{b} \in \mathrm{Z}$. We say that \mathbf{a} divides \mathbf{b}, if there exists such a number $\mathbf{c} \in \mathrm{Z}$, that $\mathbf{a} \cdot \mathbf{c}=\mathbf{b}$. If such a number \mathbf{c} does not exist, we say that a does not divide \mathbf{b}. Notation \mathbf{a} / \mathbf{b}.
E.g. $-2 / 6$ because there is a number -3 , for which it is true that -2 . $(-3)=6$.

If \mathbf{a} / \mathbf{b} then \mathbf{a} is a divisor of \mathbf{b} and \mathbf{b} is a multiple of \mathbf{a}.

It is true that:

1. $\mathrm{a} / 0$
2. $1 / \mathrm{a}$
3. $0 / \mathrm{a}=>\mathrm{a}=0$
4. $\mathrm{a} / 1 \Rightarrow \mathrm{a}=1,-1$
5. a / a (reflectiveness)
6. $\mathrm{a} / \mathrm{b}, \mathrm{b} / \mathrm{c}=>\mathrm{a} / \mathrm{c}$ (transitiveness)

Division with a remainder: Let's have $\mathbf{a}, \mathbf{b} \in \mathrm{Z}$, and $\mathbf{b} \neq 0$. Then there exists just one pair \mathbf{q}, $\mathbf{r} \in \mathrm{Z}$ only, for which it is true that $\mathbf{a}=\mathbf{b} \cdot \mathbf{q}+\mathbf{r}$, and $\mathbf{0} \leq \mathbf{r} \leq \mathbf{b}$.
Number \mathbf{q} is called a partial (fractional) quotient, \mathbf{r} is called a remainder.

Let's have a number \mathbf{b} which does not divide \mathbf{a}, and at the same time $\mathbf{b} \neq 0$. Then there exist such integers $\mathbf{q}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}$, for which it is true that $\mathbf{a}=\mathbf{b} \cdot \mathbf{q}_{\mathbf{1}}+\mathbf{r}_{\mathbf{2}}$ and $\mathbf{0} \leq \mathbf{r}_{\mathbf{2}}<\mathbf{b}$. We have to state that $0<r_{2}$ - otherwise it would be true that b/a. Let's apply the formula for division with a remainder again; now for the pair $\mathbf{b}, \mathbf{r}_{2}$ there exist such integers $\mathbf{q}_{2}, \mathbf{r}_{3}$, for which $b=\mathbf{r}_{\mathbf{2}} . \mathbf{q}_{\mathbf{2}}+\mathbf{r}_{\mathbf{3}}$ and $\mathbf{0}<\mathbf{r}_{\mathbf{3}}<\mathbf{r}_{2}$. If $\mathbf{r}_{\mathbf{3}}=\mathbf{0}$ we finish. If $\mathbf{r}_{\mathbf{3}} \neq \mathbf{0}$ we may apply the formula again for the pair $\mathbf{r}_{2}, \mathbf{r}_{3}$. The procedure will be repeated with next pairs of remainders. Since the remainders $\mathbf{r}_{2}, \mathbf{r} 3, \ldots$ are descending non-negative integers, we are sure that there will occur a zero remainder. This formula is called Euclides's algorithm of long division:
$\mathbf{a}=\mathbf{b} \cdot \mathbf{q}_{1}+\mathbf{r}_{2}$
$0<r_{2}<b$
$b=r_{2} \cdot \mathbf{q}_{2}+\mathbf{r}_{3}$
$0<r_{3}<r_{2}$
$\mathbf{r}_{2}=\mathbf{r}_{3} \cdot \mathbf{q}_{3}+\mathbf{r}_{4}$
$0<\mathbf{r}_{4}<\mathrm{r}_{3}$
-
$\mathbf{r}_{\mathrm{n}-1}=\mathrm{r}_{\mathrm{n}} . \mathbf{q}_{\mathrm{n}}$

The last non-zero remainder in the Euclides' algorithm of division for the pair of numbers \mathbf{a}, \mathbf{b} is the highest common factor of \mathbf{a} and \mathbf{b}.

Example: Find the hcf of 2100 , and 2002.
$2100=2002.1+98$
$2002=98.20+42$
$98=42.2+14$
$42=14.3$
So the hcf $(2100,2002)=14$

Ex: Let's have two polynomials:
$P(x)=x^{4}+x^{3}-3 x^{2}-4 x-1$
$Q(x)=x^{3}+x^{2}-x-1$
$\left(x^{4}+x^{3}-3 x^{2}-4 x-1\right):\left(x^{3}+x^{2}-x-1\right)=x, k=-2 x^{2}-3 x-1$
$\left(x^{3}+x^{2}-x-1\right):\left(-2 x^{2}-3 x-1\right)=-x / 2+1 / 4, k=-3 / 4 .(x+1)$
$\left(-2 x^{2}-3 x-1\right):(x+1)=-2 x-1, k=0$
The last non-zero remainder is $\mathrm{x}+1=\mathrm{hcf}$

