POLYNOMIALS IN GENERAL

If $f(x) = ax^n + bx^{n-1} + cx^{n-2} + ... + k$, $a \neq 0$, then f(x) is said to be a polynomial of degree (or order) **n** in the variable **x**.

If we consider the equation f(x) = 0 this will have up to **n** real roots. The number of real roots will depend upon the values of **a**, **b**, **c**, and **d**.

Horner's scheme: the first line consists of the coefficients of the divisor; the second line contains the multiples of a number in the third line with the suspicious 'root'. The last line is the sum of a number in the 1^{st} line with the number in the 2^{nd} line.

(x⁴ - 2x³ + 4x² - 6x + 8) : (x - 1) = x³ - x² + 3x - 3 + 5/x - 1

	1	-2	4	-6	8
1		1.1=1	-1.1=-1	3.1=3	-3 . 1 = -3
	1	1 - 2 = -1	-1 + 4 = 3	3 - 6 = -3	-3 + 8 = 5

The last window contains a remainder > 5 is the remainder; if there is zero in the last window, number 1 is a root. Numbers in the last line are the coefficients before x^3 , x^2 , x, x^0 .

If the function f(x), a polynomial in x, is divided by (x - a) until the remainder does not contain x, i.e. it is a constant, then the remainder is equal to f(a).

Proof :

Suppose that when f(x) is divided by (x - a), the quotient is g(x) and the remainder is k, then $f(x) \equiv (x - a) \cdot g(x) + k$

Substituting x = a in both sides of this identity

 $f(a) = 0 \cdot g(a) + k$

$$\mathbf{f}(\mathbf{a}) = \mathbf{k}$$

So the remainder when f(x) is divided by (x - a) us equal to f(a).

By a similar argument, when f(x) is divided by (cx - a) the remainder is f(a/c).

Example: Find the remainder when $8x^3 - 4x^2 + 6x + 7$ is divided by (x - 1)Using the remainder theorem, when f(x) is divided by (x - 1), the remainder is f(1). $f(1) = 8 \cdot 1 - 4 \cdot 1 + 6 \cdot 1 + 7 = 17$ The remainder is 17.

RELATION OF DIVISION

a, $b \in Z$. We say that **a** divides **b**, if there exists such a number $c \in Z$, that $a \cdot c = b$. If such a number **c** does not exist, we say that **a** does not divide **b**. Notation **a/b**. E.g. -2/6 because there is a number -3, for which it is true that -2. (-3) = 6.

If **a/b** then **a** is a divisor of **b** and **b** is a multiple of **a**.

It is true that:

- 1. a/0
- 2. 1/a
- 3. $0/a \Rightarrow a = 0$
- 4. a/1 => a= 1, -1
- 5. a/a (reflectiveness)
- 6. $a/b, b/c \Rightarrow a/c$ (transitiveness)

Division with a remainder: Let's have $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$, and $\mathbf{b} \neq 0$. Then there exists just one pair \mathbf{q} , $\mathbf{r} \in \mathbb{Z}$ only, for which it is true that $\mathbf{a} = \mathbf{b} \cdot \mathbf{q} + \mathbf{r}$, and $\mathbf{0} \leq \mathbf{r} \leq \mathbf{b}$. Number \mathbf{q} is called a partial (fractional) *quotient*, \mathbf{r} is called a *remainder*.

Let's have a number **b** which does not divide **a**, and at the same time $\mathbf{b} \neq 0$. Then there exist such integers $\mathbf{q_1}$, $\mathbf{r_2}$, for which it is true that $\mathbf{a} = \mathbf{b} \cdot \mathbf{q_1} + \mathbf{r_2}$ and $\mathbf{0} \leq \mathbf{r_2} < \mathbf{b}$. We have to state that $0 < \mathbf{r_2} -$ otherwise it would be true that b/a. Let's apply the formula for division with a remainder again; now for the pair **b**, $\mathbf{r_2}$ there exist such integers $\mathbf{q_2}$, $\mathbf{r_3}$, for which

 $\mathbf{b} = \mathbf{r}_2 \cdot \mathbf{q}_2 + \mathbf{r}_3$ and $\mathbf{0} < \mathbf{r}_3 < \mathbf{r}_2$. If $\mathbf{r}_3 = \mathbf{0}$ we finish. If $\mathbf{r}_3 \neq \mathbf{0}$ we may apply the formula again for the pair \mathbf{r}_2 , \mathbf{r}_3 . The procedure will be repeated with next pairs of remainders. Since the remainders \mathbf{r}_2 , \mathbf{r}_3 , ... are descending non-negative integers, we are sure that there will occur a zero remainder. This formula is called Euclides's algorithm of long division:

$\mathbf{a} = \mathbf{b} \cdot \mathbf{q}_1 + \mathbf{r}_2$	$0 < r_2 < b$
$\mathbf{b} = \mathbf{r}_2 \cdot \mathbf{q}_2 + \mathbf{r}_3$	$0 < r_3 < r_2$
$\mathbf{r}_2 = \mathbf{r}_3 \cdot \mathbf{q}_3 + \mathbf{r}_4$	$0 < r_4 < r_3$

•

$\mathbf{r}_{n-1} = \mathbf{r}_n \cdot \mathbf{q}_n$

The last non-zero remainder in the Euclides' algorithm of division for the pair of numbers **a**, **b** is *the highest common factor* of **a** and **b**.

Example: Find the hcf of 2100, and 2002. 2100 = 2002 . 1 + 98 2002 = 98 . 20 + 42 98 = 42 . 2 + 14 42 = 14 . 3 So the hcf (2100, 2002) = 14

Ex: Let's have two polynomials: $P(x) = x^{4} + x^{3} - 3x^{2} - 4x - 1$ $Q(x) = x^{3} + x^{2} - x - 1$ $(x^{4} + x^{3} - 3x^{2} - 4x - 1) : (x^{3} + x^{2} - x - 1) = x, k = -2x^{2} - 3x - 1$ $(x^{3} + x^{2} - x - 1) : (-2x^{2} - 3x - 1) = -x/2 + \frac{1}{4}, k = -\frac{3}{4} . (x+1)$ $(-2x^{2} - 3x - 1) : (x + 1) = -2x - 1, k = 0$ The last non-zero remainder is x + 1 = hcf